

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Large Hadron Accelerators: Operation, Improvements, Upgrades

Case for Fermilab, CERN, BNL, JPARC and ORNL Vladimir Shiltsev
Dec 2018 – Jan 2019

High Level : Cost to Operate vs TPC - ILC Example

APPENDIX A: ILC250 PROJECT COSTS

3	TDR: ILC500 [B ILCU]	ILC250 [B ILCU]	Conversion to: [B JPY]	
	(Estimated by GDE)	(Estimated by LCC)	(Reported to MEXT/SCJ)	
Accelerator Construction: sum	n/a	n/a	635.0 ~ 702.8	
Value: sub-sum	7.98	4.78 ~ 5.26	515.2 ~ 583.0	
Tunnel & building	1.46	1.01	111.0 ~ 129.0	
Accelerator & utility	6.52	3.77 ~ 4.24	404.2 ~ 454.0	
Labor: Human Resource			2 M person-hours 119.8 .1 K person-years)	
Detector Construction: sum	n/a	n/a	100.5	
Value: Detectors (SiD+ILD)	315+392	315+392	76.6	
Labor: Human Resource (SiD + ILD)	748+1,400 person-years	748+1,400 person-years	23.9	
Operation/year (Acc.) : sum	n/a	n/a	36.6 ~ 39.2	
Value: Utilities/Maintenance	390	290 ~ 316	29.0 ~ 31.6	
Labor: Human Resource	850 FTE	638 FTE	7.6	
Others (Acc. Preparation)	n/a	n/a	23.3	
Uncertainty	25%	25%	25%	
Contingency	10%	10%	10%	
Decommission	n/a	n/a	Equiv. to 2-year op. cost	

http://www.mext.go.jp/component/b_menu/shingi/toushin/__icsFiles/afieldfile/2018/09/20/1409220_2_1.pdf

FIG. 7. Costs of the ILC250 project in ILCU as evaluated by the Linear Collider Collaboration (LCC), converted to JPY and re-evaluated by KEK, and summarised in the MEXT ILC Advisory Panel report, in July, 2018.

39.2/702.8= 5.6% / year or "lifetime" τ of 18 yrs = 1/5.6% Fermilab

Cost to Operate vs TPC: LHC, RHIC, Fermilab, JPARC and SNS

07002	In todays' \$\$ - TPC:		Ops \$\$/yr	τ, yrs
high energy JINST 9 T(LHC+SPS+PS+PSB	~11 B\$ ± 4	~700M\$	15
	RHIC+AGS+Boo+Li	~4.2B\$ ± 1.5	~170M\$	25
2014	MI+RR+B+Linac+MC	~4.0B\$ ± 1.4	~110M\$	36
logical cos erators	JPARC (L+RCS+MR)	~1.5B\$ ± 0.2	~190M\$	8
ohenomeno rticle accele	SNS (Linac + Ring)	~1.4B\$ ± 0.3	~200M\$	7
Jan Dan				

CERN's Accelerator Complex

CERN (1)

Linac 2/4

PSB

PS

SPS

LHC

Beamlines

Upgr:HE-

LHC/FCC

LHC Injector Upgrades (LIU): 2014-2019, ~200MCHF

Motivation

- 1. Reliability: Present CERN accelerators too old ⇒need for new accelerators designed for the needs of SLHC
- 2. Performance: Increase of brightness of the beam in LHC to allow for phase 2 of the LHC upgrade. ⇒need to increase the injection energy in the synchrotrons

LP-SPL: Low Power-Superconducting Proton Linac (4-5 GeV)

PS2: High Energy PS (~ 5 to 50 GeV - 0.3 Hz)

SPS+: Superconducting SPS (50 to1000 GeV)

sLHC: "Super-luminosity" LHC (up to 10³⁵

 $cm^{-2}s^{-1}$

DLHC: "Double energy" LHC (1 to ~14 TeV)

CERN (3): LIU 2014-2019 (~200MCHF)

- The replacement of Linac2, which accelerates protons to 50 MeV, with Linac4, providing 160 MeV H- ions;
- Proton Synchrotron Booster (PSB): New 160 MeV Hcharge exchange injection, acceleration to 2 GeV from current 1.4 GeV with new power supply and RF system;
- Proton Synchrotron (PS): New 2 GeV injection, broadband longitudinal feedback;
- Super Proton Synchrotron (SPS): Upgrade of the 200 MHz RF system, impedance reduction and e-cloud mitigation, new beam dump and protection devices.

BNL(1)

AGS Upgrades : 4 Decades

RHIC Luminosity Improvements/Upgrades: Past Decade

- Polarization improvements
 - Snakes, polarimeters, etc
- EBIS (Electron Bean Ion Source)
 - better ion source (~x 10 in currents)
- Bunched beam stochastic cooling
 - Fermilab hardware for ions → ~x3 in integrated L
- Electron Lenses
 - (Tevatron like) for HO BBC → ~x2 in integrated L
- Low energy electron cooling to collide low energy ions with high(er) lumiunosity:
 - Coherent e- cooling (suspended)
 - Photoinjector based 2.6 MeV e-cooler (installed)

Other Improvements Under Discussion or Under Way

- 200 MeV Linac: pulse length doubling for increased isotope production - proposal formulated, waiting for funding)
- Extended EBIS (2 superconducting solenoids in series instead of 1 now) - under way, completion by Dec 2020
 - will yield ~40% more Au beam (longer trap length)
 - will have gas cell for He-3 polarization
 - will give better performance for other gas elements (NASA interest)

Booster

 AC dipole installation for polarized He-3 acceleration (hopefully before RHIC Run-19)

AGS

polarized He-3 acceleration after we have beam through
 Booster

Security

Long Baseline Neutrino NuMI-MINOS **Booster Neutrino** Fermilab (1) Facility Beam (120 GeV) Beam (8 GeV) (60-120 GeV) **Muon Campus** Linac (400 MeV) Booster (8 GeV) Main Injector (120 GeV) Switchyard (120 GeV) PIP-II linac (0.8 GeV) Recycler (8 GeV) Ε Costr. H-RFQ 0.75 MeV 2 m 2013 Linac 400 MeV 1970/93 200 m Tevatron (1 TeV) 8 GeV 500 m 1971 **Booster** defunct since 2011 RR 8 GeV 3.3 km 1999 MI 120 GeV 3.3 km 1999 **Delivery Ring** 3.8-8 GeV 500 m 1985/2014 **Beamlines** 1970's-now 3-120 GeV 3.5 km Upgr: PIP-II 800 MeV 240 m 2025 Upgr:PIP-III 8 GeV 2032 500 m 2025

500 m

Upgr: beamlines

Fermilab (2) – Many improvements plus PIP I-II-III

JPARC (1)

Beamlines

Upgr: Power f*N

3-30 GeV

200 m

2009

2020-28

JPARC (2) - Upgrades

Higher rep rate:

- 1) MR magnet power supply upgrade
- 2) MR RF upgrade (High grad/PS)
- 3) MR Fast Extraction Kicker upgrade

Higher #p/p:

1) MR RF upgrade (PS)

SNS (1)

1.3 GeV

2025

2029

Upgr: PPU

Upgr: STS

SNS(2): Proton Power Upgrade

- Proton Power Upgrade project at the ORNL/SNS will double the proton beam power from 1.4 MW to 2.8 MW.
- This will be accomplished by a ~50% increase in beam current, from 25 to 38 mA and an increase in the final beam energy from 1.0 to 1.3 GeV.
- To achieve the current increase some warm linac RF systems will be upgraded to higher power:
 - upgrade DTL-4 and DTL-5 klystrons from 2.5MW to 3 MW
 - new resonant kicker charging system instead of DC
- To achieve the energy increase 7 CMs containing 28 high-β elliptical SRF cavities will be added to the end of the linac:
 - Plus many other things, like stripping foil, collimation, IBS loss control, gas stripping loss control, etc

16

SNS (3): Second Target Station - Concept

- Accelerator: Accelerator modifications will increase
 the power of SNS; the existing target station will receive 50
 proton pulses per second while 10 pulses per second will be
 redirected down a new transport line to the second target
 station.
- Target System: The proton pulse reaching the target will have one-fifth the footprint of and produce neutrons in a much smaller volume than those reaching the first SNS target. To manage volumetric heating, the tungsten target will rotate during use so that only 5 percent is active at any one time. Advanced moderators located adjacent to the active target region will lower the neutron energies to those required by the instruments.